MSc Kluba

PhD student
Electronic Components, Technology and Materials (ECTM), Department of Microelectronics

Expertise: Development of deep brain stimulation lead using F2R technology

Themes: Flexible and Stretchable Electronics

Biography

Marta was born in Oświęcim, Poland in 1986. She received her MSc degree in Chemical Technology from AGH-UST, Poland in 2010 and double MSc degree in Biomedical Engineering from RUG, The Netherland and RWTH Aachen, Germany in 2014. After a year of working at DIMES-TC as a process engineer, she started her PhD in the development of deep brain stimulator probe in June 2015.

InForMed: D4 - Steering deep brain stimulation probe (Chip-in-Tip)

  1. Novel method of alignment to buried cavities in cavity-SOI wafers for advanced MEMS devices
    Mountain, C.; Kluba, M.; Bergers, L.; Snijder, J.; Dekker, R.;
    Micro and Nano Engineering,
    2019. DOI: https://doi.org/10.1016/j.mne.2019.100043

  2. Effect of Signals on the Encapsulation Performance of Parylene Coated Platinum Tracks for Active Medical Implants
    Nanbakhsh, K.; Kluba, M.; Pahl, B.; Bourgeois, F.; Dekker, R.; Serdijn, W.; Giagka, V.;
    In 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
    IEEE, pp. 3840-3844, 2019. DOI: https://doi.org/10.1109/EMBC.2019.8857702

  3. Towards a semi-flexible parylene-based platform technology for active implantable medical devices
    Bakhshaee Babaroud, N.; Kluba, M.; Dekker, R.; Serdijn, W.; Giagka, V.;
    In 7th Dutch Bio-Medical Engineering Conference - Egmond aan Zee, Netherlands,
    2019.
    document

  4. Wafer-Scale Integration for Semi-Flexible Neural Implant Miniaturization
    Marta Kluba; Bruno Morana; Angel Savov; Henk Van Zeijl; Gregory Pandraud; Ronald Dekker;
    In Proceedings Eurosensors,
    pp. 941, 2018. DOI: https://doi.org/10.3390/proceedings2130941

  5. Generic platform for the miniaturization of bioelectronic implants
    M. M. Kluba; J. W. Weekamp; M. Louwerse; V. Henneken; R. Dekker;
    In Design of Medical Devices Conference (DMD Europe),
    2017.

  6. Singe-Step CMOS Compatible Fabrication of High Aspect Ratio Microchannels Embedded in Silicon
    M. Kluba; A. Arslan; R. Stoute; J. Muganda; R. Dekker;
    In Eurosensors,
    2017.
    document

  7. Silicon based microfluidic device with integrated electrodes for the assessment of cellular stiffness
    S. Kawasaki; M. Kluba; R.Dekker;
    In Design of Medical Devices Conference (DMD Europe),
    2017.

  8. A low-cost electrical read-out system for cell stiffness measurement using silicon based microfluidic device
    S. Kawasaki; M. M. Kluba; R. Dekker;
    In ICT.OPEN,
    2017.

  9. High Aspect Ratio Buried Channel Fabricated Using Two Step DRIE Process
    M. M. Kluba; A. Arslan; R. Dekker;
    In ICT.OPEN,
    2016.

BibTeX support

Last updated: 16 Aug 2017