Sten Vollebregt

Publications

  1. Beyond Conventional Characterization: Defect Engineering Role for Sensitivity and Selectivity of Room-Temperature UV-Assisted Graphene-Based NO₂ Sensors
    Álvaro Peña; Jesús López-Sánchez; Leandro Sacco; Sten Vollebregt; Jorge Marqués-Marchán; M. Carmen Horrillo; Pilar Marín; Daniel Matatagui;
    Talanta,
    2025. DOI: 10.1016/j.talanta.2024.127507

  2. A Fully Integrated Sequential Synchronized Switch Harvesting on Capacitors Rectifier Based on Split-Electrode for Piezoelectric Energy Harvesting
    Xinling Yue; Jiarui Mo; Zhiyuan Chen; Sten Vollebregt; Guoqi Zhang; Sijun Du;
    IEEE Transactions on Power Electronics,
    Volume 39, Issue 6, pp. 7643-7653, 2024. DOI: 10.1109/TPEL.2024.3369728

  3. Measuring residual stresses in individual on-chip interconnects using synchrotron nanodiffraction
    Yaqian Zhang; Leiming Du; Olof Bäcke; Sebastian Kalbfleisch; Guoqi Zhang; Sten Vollebregt; Magnus Hörnqvist Colliander;
    Applied Physics Letters,
    Volume 124, pp. 083501-1-6, 2024. DOI: 10.1063/5.0192672

  4. Surface modification of multilayer graphene neural electrodes by local printing of platinum nanoparticles using spark ablation
    Nasim Bakhshaee Babaroud; Samantha J. Rice; Maria Camarena Perez; Wouter A. Serdijn; Sten Vollebregt; Vasiliki Giagka;
    Nanoscale,
    Volume 16, pp. 3549-3559, 2024. DOI: 10.1039/D3NR05523J

  5. Highly-sensitive wafer-scale transfer-free graphene MEMS condenser microphones
    Roberto Pezone; Sebastian Anzinger; Gabriele Baglioni; Hutomo Suryo Wasisto; Lina Sarro; Peter Steeneken; Sten Vollebregt;
    Microsystems & Nanoengineering,
    Volume 10, Issue 27, pp. 1-9, 2024. DOI: 10.1038/s41378-024-00656-x

  6. Effect of air-loading on the performance limits of graphene microphones
    R. Pezone; G. Baglioni; C. Van Ruiten; S. Anzinger; H. S. Wasisto; P. M. Sarro; P. G. Steeneken; S. Vollebregt;
    Applied Physics Letters,
    Volume 124, Issue 12, 2024. DOI: 10.1063/5.0191939

  7. A high aspect ratio surface micromachined accelerometer based on a SiC-CNT composite material
    Jiarui Mo; Shreyas Shankar; Roberto Pezone; Guoqi Zhang; Sten Vollebregt;
    Microsystems & Nanoengineering,
    Volume 10, Issue 42, 2024. DOI: 10.1038/s41378-024-00672-x

  8. An Analog to Digital Converter in a SiC CMOS Technology for High-temperature Applications
    Jiarui Mo; Yunfan Niu; Alexander May; Mathias Rommel; Chiara Rossi; Joost Romijn; Guoqi Zhang; Sten Vollebregt;
    Applied Physics Letters,
    Volume 124, Issue 15, 2024. DOI: 10.1063/5.0195013

  9. Origin of the mm-submm loss in deposited dielectrics
    B.T. Buijtendorp; A. Endo; W. Jellema; K. Karatsu; K. Kouwenhoven; D. Lamers; A. J. van der Linden; K. Rostem; M. Veen; E. J. Wollack; J. J. A. Baselmans; S. Vollebregt;
    arXiv:2405.13688,
    2024.
    document

  10. Quantifying stress distribution in ultra-large graphene drums through modeshape imaging
    Ali Sarafraz; Hanqing Liu; Katarina Cvetanović; Marko Spasenović; Sten Vollebregt; Tomás Manzaneque Garcia; Peter G. Steeneken; Farbod Alijani; Gerard J. Verbiest;
    npj 2D materials and applications,
    Volume 8, Issue 45, 2024. DOI: 10.1038/s41699-024-00485-6

  11. Temperature Sensing Elements for Harsh Environments in a 4H-SiC CMOS Technology
    Jiarui Mo; Jinglin Li; Alexander May; Mathias Rommel; Sten Vollebregt; Guoqi Zhang;
    IEEE Transactions on Electron Devices,
    Volume 71, Issue 10, pp. 5881-5887, 2024. DOI: 10.1109/TED.2024.3450828

  12. Investigating Mechanical Properties of Silicon Carbide Coated Carbon Nanotube Composite at Elevated Temperatures
    Jiarui Mo; Gerald J.K. Schaffar; Leiming Du; Verena Maier-Kiener; Daniel Kiener; Sten Vollebregt; Guoqi Zhang;
    In IEEE 37th Intl. Conf. on Micro Electro Mechanical Systems (MEMS2024),
    2024. DOI: 10.1109/MEMS58180.2024.10439455

  13. A SiC-carbon nanotube composite for MEMS
    Sten Vollebregt;
    In Sensor Decade,
    2024. Invited keynote.

  14. In Situ Analysis of Copper Microstructures in Electromigration Using SEM-EBSD Techniques
    Yaqian Zhang; Yixin Yan; Sten Vollebregt; GuoQi Zhang;
    In Proceedings - IEEE 74th Electronic Components and Technology Conference (ECTC),
    pp. 1317-1321, 2024. DOI: 10.1109/ECTC51529.2024.00214

  15. Transfer-free Fabrication and Characterisation of Transparent Multilayer CVD Graphene MEAs for in-vitro Optogenetic Applications
    Gonzalo León González; Shanliang Deng; Sten Vollebregt; Vasiliki Giagka;
    In Proc. of IEEE Medical Measurements & Applications conference,
    2024. DOI: 10.1109/MeMeA60663.2024.10596734

  16. Origin of mm-submm loss in deposited dielectrics for superconducting astronomical instrumentation
    Bruno T. Buijtendorp; Akira Endo; Willem Jellema; Kenichi Karatsu; Ton van der Linden; Dimitry Lamers; Karwan Rostem; Edward J. Wollack; Jochem J. A. Baselmans; Sten Vollebregt; Robert Huisman; Martijn Veen;
    In Proceedings Volume PC13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII,
    2024. DOI: 10.1117/12.3020071

  17. Improvement of on-chip terahertz spectroscopy by nanometer-scale control of electron-beam lithography
    Leon Olde Scholtenhuis; Kenichi Karatsu; David J. Thoen; Louis H. Marting; Jochem J. A. Baselmans; Sten Vollebregt; Akira Endo;
    In Proceedings Volume 13092, Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave,
    2024. DOI: 10.1117/12.3017946

  18. The Impact of Outgassing of Molding Compound on Graphene for Gas Sensing
    Tiance An; Mudassir Husain; Sten Vollebregt;
    In Proc. of IEEE Sensors,
    2024.

  19. Optimization of multilayer graphene-based gas sensors by ultraviolet photoactivation
    Álvaro Peña; Daniel Matatagui; Filiberto Ricciardella; Leandro Sacco; Sten Vollebregt; Daniel Otero; JesúsLópez-Sánchez; Pilar Marína; M.Carmen Horrillo;
    Applied Surface Science,
    Volume 610, pp. 155393, 2023. DOI: 10.1016/j.apsusc.2022.155393

  20. Overview of Engineering Carbon Nanomaterials such as Carbon Nanotubes (CNTs), Carbon Nanofibers (CNFs), Graphene and Nanodiamonds and Other Carbon Allotropes inside Porous Anodic Alumina (PAA) Templates
    Leandro Sacco; Sten Vollebregt;
    MDPI Nanomaterials,
    Volume 13, Issue 2, pp. 260, 2023. DOI: 10.3390/nano13020260

  21. Transient thermal measurement on nano-metallic sintered die-attach joints using a thermal test chip
    R. Sattari; Dong Hu; Xu Liu; H. van Zeijl; S. Vollebregt; GuoQi Zhang;
    Applied Thermal Engineering,
    Volume 221, pp. 119503, 2023. DOI: 10.1016/j.applthermaleng.2022.119503

  22. Coupling Model of Electromigration and Experimental Verification – Part I: Effect of Atomic Concentration Gradient
    Zhen Cui; Xuejun Fan; Yaqian Zhang; Sten Vollebregt; Jiajie Fan; Guoqi Zhang;
    Journal of the Mechanics and Physics of Solids,
    Volume 174, pp. 105257, 2023. DOI: 10.1016/j.jmps.2023.105257

  23. Coupling Model of Electromigration and Experimental Verification – Part II: Impact of Thermomigration
    Zhen Cui; Xuejun Fan; Yaqian Zhang; Sten Vollebregt; Jiajie Fan; Guoqi Zhang;
    Journal of the Mechanics and Physics of Solids,
    Volume 174, pp. 105256, 2023. DOI: 10.1016/j.jmps.2023.105256

  24. Ultra-sensitive graphene membranes for microphone applications
    Gabriele Baglioni; Roberto Pezone; Sten Vollebregt; Katarina Cvetanović Zobenica; Marko Spasenović; Dejan Todorovic; Hanqing Liu; Gerard Verbiest; Herre S.J. van der Zant; Peter Gerard Steeneken;
    Nanoscale,
    Volume 15, pp. 6343-6352, 2023. DOI: 10.1039/D2NR05147H

  25. Microfabricated albedo insensitive sun position sensor system in silicon carbide with integrated 3D optics and CMOS electronics
    Joost Romijn; Sten Vollebregt; Vincent G. de Bie; Luke M. Middelburg; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Johan Leijtens; Guoqi Zhang; Pasqualina M. Sarro;
    Sensors and Actuators A: Physical,
    Volume 354, pp. 114268, 2023. DOI: 10.1016/j.sna.2023.114268

  26. The sensitivity enhancement of TiO2-based VOCs sensor decorated by gold at room temperature
    Mostafa Shooshtari; Sten Vollebregt; Yas Vaseghi; Mahshid Rajati; Saeideh Pahlavan;
    IOP Nanotechnology,
    Volume 34, Issue 25, pp. 255501, 2023. DOI: 10.1088/1361-6528/acc6d7

  27. A Highly Linear Temperature Sensor Operating up to 600°C in a 4H-SiC CMOS Technology
    Jiarui Mo; Jinglin Li; Yaqian Zhang; Joost Romijn; Alexander May; Tobias Erlbacher; Guoqi Zhang; Sten Vollebregt;
    IEEE Electron Device Letters,
    Volume 44, Issue 6, pp. 995-998, 2023. DOI: 10.1109/LED.2023.3268334

  28. Nanostructured Thermoelectric Films Synthesised by Spark Ablation and Their Oxidation Behaviour
    Joost van Ginkel; Lisa Mitterhuber; Marijn Willem van de Putte; Mark Huijben; Sten Vollebregt; Guoqi Zhang;
    Nanomaterials,
    Volume 13, Issue 11, pp. 1778, 2023. DOI: 10.3390/nano13111778

  29. Copper Nanoparticle Sintering Enabled Hermetic Packaging With Fine Sealing Ring for MEMS Application
    Dong Hu; Mustafeez Bashir Shah; Jiajie Fan; Sten Vollebregt; Guoqi Zhang;
    IEEE Transactions on Electron Devices,
    Volume 70, Issue 11, pp. 5818-5823, 2023. DOI: 10.1109/TED.2023.3312066

  30. Quantifying stress distribution in ultra-large graphene drums through mode shape imaging
    Ali Sarafraz; Hanqing Liu; Katarina Cvetanović; Marko Spasenović; Sten Vollebregt; Tomas Manzaneque Garcia; Peter G. Steeneken; Farbod Alijani;
    arXiv,
    2023. DOI: 10.48550/arXiv.2311.00443

  31. Design and Characterization of a Data Converter in a SiC CMOS Technology for Harsh Environment Sensing Applications
    Yunfan Niu; Jiarui Mo; Alexander May; Mathias Rommel; Chiara Rossi; Joost Romijn; Guoqi Zhang; Sten Vollebregt;
    In Proc. of IEEE Sensors,
    2023. DOI: 10.1109/SENSORS56945.2023.10325061

  32. High-performance wafer-scale transfer-free graphene microphones
    Roberto Pezone; Gabriele Baglioni; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
    In IEEE 36th Intl. Conf. on Micro Electro Mechanical Systems (MEMS2023),
    2023. DOI: 10.1109/MEMS49605.2023.10052360

  33. Silicon carbide reinforced vertically aligned carbon nanotube composite for harsh environment MEMS
    Jiarui Mo; Shreyas Shankar; Guoqi Zhang; Sten Vollebregt;
    In IEEE 36th Intl. Conf. on Micro Electro Mechanical Systems (MEMS2023),
    2023. DOI: 10.1109/MEMS49605.2023.10052162

  34. Electromigration-induced local dewetting in Cu films
    Yaqian Zhang; Jiarui Mo; Zhen Cui; Sten Vollebregt; GuoQi Zhang;
    In Proc. of the IEEE International Interconnect Technology Conference,
    2023. DOI: 10.1109/IITC/MAM57687.2023.10154761

  35. Reliability Analysis on Ag and Cu Nanoparticles Sintered Discrete Power Devices with Various Frontside and Backside Interconnects
    Dong Hu; Xu Liu; Sten Vollebregt; Jiajie Fan; Guoqi Zhang; Ali Roshanghias; Xing Liu; Thomas Basler; Emiel De Bruin;
    In Proc. of Electronic Components and Technology Conference (ECTC),
    2023.

  36. MOSFET-based And P-N Diode Based Temperature Sensors In A 4H-sSiC CMOS Technology
    Jiarui Mo; Jinglin Li; Yaqian Zhang; Alexander May; Tobias Erlbacher; Guoqi Zhang; Sten Vollebregt;
    In 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2023),
    2023.
    document

  37. Wafer-scale Transfer-free Graphene MEMS Condenser Microphones
    Roberto Pezone; Gabriele Baglioni; Leonardo di Paola; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
    In 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2023),
    2023.
    document

  38. Graphene gas sensors monolithically integrated on microhotplates by using a transfer-free approach
    Leandro Sacco; Sten Vollebregt;
    In Graphene Week,
    2023.
    document

  39. High aspect-ratio multi-layer graphene MEMS condenser microphones
    Roberto Pezone; Gabriele Baglioni; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
    In Graphene Week,
    2023.
    document

  40. Time Dependent Dielectric Breakdown of 4H-SiC MOSFETs in CMOS technology
    Yaqian Zhang; Jiarui Mo; Sten Vollebregt; GuoQi Zhang;
    In 24th International Conference on Electronic Packaging Technology (ICEPT),
    2023. DOI: 10.1109/ICEPT59018.2023.10492218

  41. Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces
    Nasim Bakhshaee Babaroud; Merlin Palmar; Andrada Iulia Velea; Chiara Coletti; Sebastian Weingärtner; Frans Vos; Wouter A. Serdijn; Sten Vollebregt; Vasiliki Giagka;
    Nature Microsystems & Nanoengineering,
    Volume 8, pp. 107, 2022. (featured article). DOI: 10.1038/s41378-022-00430-x

  42. Integrated Digital and Analog Circuit Blocks in a Scalable Silicon Carbide CMOS Technology
    Joost Romijn; Sten Vollebregt; Luke M. Middelburg; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Guoqi Zhang; Pasqualina M. Sarro;
    IEEE Transactions on Electron Devices,
    Volume 69, Issue 1, pp. 4-10, 2022. DOI: 10.1109/TED.2021.3125279

  43. Technology Development for MEMS: A Tutorial
    Paddy J French; Gijs JM Krijnen; Sten Vollebregt; Massimo Mastrangeli;
    IEEE Sensors Journal,
    Volume 22, Issue 11, 2022. DOI: 10.1109/JSEN.2021.3104715

  44. Mass and density determination of porous nanoparticle films using a quartz crystal microbalance
    Hendrik Joost van Ginkel; Sten Vollebregt; GuoQi Zhang; Andreas Schmidt-Ott;
    IOP Nanotechnology,
    Volume 33, Issue 48, 2022. DOI: 10.1088/1361-6528/ac7811

  45. Characterization of low-loss hydrogenated amorphous silicon films for superconducting resonators
    Bruno T. Buijtendorp; Juan Bueno; David J. Thoen; Vignesh Murugesan; Paolo M. Sberna; Jochem J. A. Baselmans; Sten Vollebregt; Akira Endo;
    J. of Astronomical Telescopes, Instruments, and Systems,
    Volume 8, Issue 2, pp. 028006, 2022. DOI: 10.1117/1.JATIS.8.2.028006

  46. Effects of Temperature and Grain Size on Diffusivity of Aluminium: Electromigration Experiment and Molecular Dynamic Simulation
    Zhen Cui; Yaqian Zhang; Dong Hu; Sten Vollebregt; Jiajie Fan, Xuejun Fan; Guoqi Zhang;
    Journal of Physics: Condensed Matter,
    Volume 34, pp. 175401, 2022. DOI: 10.1088/1361-648X/ac4b7f

  47. Enhancement of Room Temperature Ethanol Sensing by Optimizing the Density of Vertically Aligned Carbon Nanofibers Decorated with Gold Nanoparticles
    Mostafa Shooshtari; Leandro Nicolas Sacco; Joost Van Ginkel; Sten Vollebregt; Alireza Salehi;
    MDPI Materials,
    Volume 15, Issue 4, pp. 1383, 2022. DOI: 10.3390/ma15041383

  48. Sensitive Transfer-Free Wafer-Scale Graphene Microphones
    Roberto Pezone; Gabriele Baglioni; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
    ACS Applied Materials & Interfaces,
    Volume 14, Issue 18, pp. 21705-21712, 2022. DOI: 10.1021/acsami.2c03305

  49. Direct Wafer-Scale CVD Graphene Growth under Platinum Thin-Films
    Yelena Hagendoorn; Gregory Pandraud; Sten Vollebregt; Bruno Morana; Pasqualina M. Sarro; Peter G. Steeneken;
    MDPI Materials,
    Volume 15, Issue 10, pp. 3723, 2022.
    document

  50. Angle Sensitive Optical Sensor for Light Source Tracker Miniaturization
    Joost Romijn; Secil Sanseven; Guoqi Zhang; Sten Vollebregt; Pasqualina M. Sarro;
    IEEE Sensors Letters,
    Volume 6, Issue 6, pp. 1-4, 2022. DOI: 10.1109/LSENS.2022.3175607

  51. Hydrogenated amorphous silicon carbide: A low-loss deposited dielectric for microwave to submillimeter-wave superconducting circuits
    B. T. Buijtendorp; S. Vollebregt; K. Karatsu; D. J. Thoen; V. Murugesan; K. Kouwenhoven; S. Hähnle; J. J. A. Baselmans; A. Endo;
    Physical Review Applied,
    Volume 18, pp. 064003, 2022. DOI: 10.1103/PhysRevApplied.18.064003

  52. Integrated 64 pixel UV image sensor and readout in a silicon carbide CMOS technology
    Joost Romijn; Sten Vollebregt; Luke M. Middelburg; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Johan Leijtens; Guoqi Zhang; Pasqualina M. Sarro;
    Nature Microsystems & Nanoengineering,
    Volume 8, pp. 114, 2022. DOI: 10.1038/s41378-022-00446-3

  53. Patterning of Fine-Features in Nanoporous Films Synthesized by Spark Ablation
    Xinrui Ji; Joost van Ginkel; Dong Hu; Andreas Schmidt-Ott; Henk van Zeijl; Sten Vollebregt; GuoQi Zhang;
    In Proc. IEEE Nano,
    pp. 238-241, 2022. DOI: 10.1109/NANO54668.2022.9928705

  54. Visible Blind Quadrant Sun Position Sensor in a Silicon Carbide Technology
    Joost Romijn; Sten Vollebregt; Alexander May; Tobias Erlbacher; Henk W. van Zeijl; Johan Leijtens; GuoQi Zhang; Pasqualina M. Sarro;
    In 35th Intl. Conf. on Micro Electro Mechanical Systems (MEMS 2022),
    2022. DOI: 10.1109/MEMS51670.2022.9699533

  55. Synthesis of Carbon Nanofibers (CNFs) by PECVD Using Ni Catalyst Printed by Spark Ablation
    Leandro Sacco; Joost van Ginkel; Sten Vollebregt;
    In Proc. IEEE Nano,
    pp. 128-131, 2022. DOI: 10.1109/NANO54668.2022.9928632

  56. ZnO Nanoparticle Printing for UV Sensor Fabrication
    Hendrik Joost van Ginkel; Mattia Orvietani; Joost Romijn; GuoQi Zhang; Sten Vollebregt;
    In Proc. of IEEE Sensors,
    2022. DOI: 10.1109/SENSORS52175.2022.9967053

  57. Humidity Sensor Based on Multi-Layer Graphene (MLG) Integrated Onto a Micro-Hotplate (MHP)
    Leandro Sacco; Hanxing Meng; Sten Vollebregt;
    In Proc. of IEEE Sensors,
    2022. DOI: 10.1109/SENSORS52175.2022.9967039

  58. Transfer-free multi-layer graphene as a platform for NEMS/MEMS sensors
    Sten Vollebregt;
    In MNE-ES conference (plenary),
    2022.

  59. Transfer-free multi-layered graphene (MLG) on integrated microheaters: an attractive platform for gas sensing
    Leandro Sacco; Hanxing Meng; Sten Vollebregt;
    In MNE-ES conference,
    2022.

  60. Wafer-Scale Transfer-Free Sensitive Graphene Microphones
    Roberto Pezone; G. Baglioni; P.M. Sarro; P.G. Steeneken; S. Vollebregt;
    In Graphene Week,
    2022.
    document

  61. Characterization of ultra-sensitive graphene membranes for microphone applications
    Gabriele Baglioni; Roberto Pezone; Sten Vollebregt; Katarina Cvetanović; Marko Spasenović; Dejan Todorović; Hanqing Liu; Gerard J. Verbiest; Herre S.J. van der Zant; Peter G. Steeneken;
    In Graphene Week,
    2022.
    document

  62. Low-loss a-SiC:H for superconducting microstrip lines for (sub-)millimeter astronomy
    Bruno T. Buijtendorp; Akira Endo; Kenichi Karatsu; David Thoen; Vignesh Murugesan; Kevin Kouwenhoven; Sebastian Hähnle; Jochem J. A. Baselmans; Sten Vollebregt;
    In Proc. SPIE PC12190, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI,
    pp. PC121900W, 2022. DOI: 10.1117/12.2630107

  63. Multi-Layer Graphene Pirani Pressure Sensors
    Romijn, Joost; Dolleman, Robin; Singh, Manvika; van der Zant, Herre; Steeneken, Peter; Sarro, Pasqualina; Vollebregt, Sten;
    IOP Nanotechnology,
    Volume 32, Issue 33, pp. 335501, 2021. DOI: 10.1088/1361-6528/abff8e

  64. Effect of Temperature and Humidity on the Sensing Performance of TiO2 Nanowire-based Ethanol Vapor Sensors
    Mostafa Shooshtari; Alireza Salehi; Sten Vollebregt;
    IOP Nanotechnology,
    Volume 32, Issue 32, pp. 325501, 2021. DOI: 10.1088/1361-6528/abfd54

  65. Surface-micromachined Silicon Carbide Pirani Gauges for Harsh Environments
    Jiarui Mo; Luke Middelburg; Bruno Morana; H.W. Van Zeijl; Sten Vollebregt; GuoQi Zhang;
    IEEE Sensors Letters,
    Volume 21, Issue 2, pp. 1350-1358, 2021. DOI: 10.1109/JSEN.2020.3019711

  66. Monolithic Integration of a Smart Temperature Sensor on a Modular Silicon-based Organ-on-a-chip Device
    Ronaldo Martins da Ponte; Nikolas Gaio; Henk van Zeijl; Sten Vollebregt; Paul Dijkstra; Ronald Dekker; Wouter A. Serdijn; Vasiliki Giagka;
    Sensors and Actuators A: Physical,
    Volume 317, pp. 112439, 2021. DOI: 10.1016/j.sna.2020.112439
    document

  67. Influence of defect density on the gas sensing properties of multi-layered graphene grown by chemical vapor deposition
    Filiberto Ricciardella; Sten Vollebregt; Rita Tilmann; Oliver Hartwig; Cian Bartlam; Pasqualina M. Sarro; Hermann Sachdev; Georg S.Duesberg;
    Carbon Trends,
    Volume 3, pp. 100024, 2021.
    document

  68. Insights into the high-sulphur aging of sintered silver nanoparticles: An experimental and ReaxFF study
    Dong Hu; Tijian Gu; Zhen Cui; Sten Vollebregt; Xuejun Fan; Guoqi Zhang; Jiajie Fan;
    Corrosion Science,
    pp. 109846, 2021. DOI: 10.1016/j.corsci.2021.109846

  69. Hydrogenated Amorphous Silicon Carbide: A Low-loss Deposited Dielectric for Microwave to Submillimeter Wave Superconducting Circuits
    B. T. Buijtendorp; S. Vollebregt; K. Karatsu; D. J. Thoen; V. Murugesan; K. Kouwenhoven; S. Hähnle; J. J. A. Baselmans, A. Endo;
    arXiv,
    2021.
    document

  70. Room temperature ppt-level NO2 gas sensor based on SnOx/SnS nanostructures with rich oxygen vacancies
    Hongyu Tang; Chenshan Gao; Huiru Yang; Leandro Nicolas Sacco; Robert Sokolovskij; Hongze Zheng; Huaiyu Ye; Sten Vollebregt; Hongyu Yu; Xuejun Fan; Guoqi Zhang;
    2D Materials,
    2021. DOI: 10.1088/2053-1583/ac13c1

  71. Transfer-free multi-layer graphene: a platform for NEMS/MEMS sensors
    Sten Vollebregt;
    In Graphene Conference,
    2021. (invited).

  72. Wafer-scale graphene: a transfer-free approach
    Sten Vollebregt;
    In Graphene Online,
    2021. (invited).
    document

  73. Towards a Scalable Sun Position Sensor with Monolithic Integration of the 3d Optics for Miniaturized Satellite Attitude Control
    J. Romijn; S. Vollebregt; H. W. van Zeijl; G. Zhang; J. Leijtens; P. M. Sarro;
    In 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS),
    pp. 642-645, Jan 2021. DOI: 10.1109/MEMS51782.2021.9375434

  74. Resistive and PTAT Temperature Sensors in a Silicon Carbide CMOS Technology
    Joost Romijn; Luke M. Middelburg; Sten Vollebregt; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Guoqi Zhang; and Pasqualina M. Sarro;
    In Proc. of IEEE Sensors,
    2021.

  75. High step coverage interconnects by printed nanoparticles
    Hendrik Joost van Ginkel; Joost Romijn; Sten Vollebregt; GuoQi Zhang;
    In Proc. of the 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC),
    2021.

  76. Low-loss dielectric for high frequency cryogenic applications
    J.J.A. Baselmans; B.T. Buijtendorp; A. Endo; S. Vollebregt;
    Patent, NL2024742B1; WO2021150101, 2021.

  77. Low-friction, wear-resistant, and electrically homogeneous multilayer graphene grown by chemical vapor deposition on molybdenum
    Borislav Vasic; Uros Ralevic; Katarina Cvetanovic Zobenica; Milce Smiljanic; Rados Gajic; Marko Spasenovic; Sten Vollebregt;
    Applied Surface Science,
    Volume 509, pp. 144792, 2020. DOI: 10.1016/j.apsusc.2019.144792

  78. Infrared absorbance of vertically-aligned multi-walled CNT forest as a function of synthesis temperature and time
    Amir Mirza Gheytaghia; Amir Ghaderi; Sten Vollebregt; Majid Ahmadic; Reinoud Wolffenbuttel; GuoQi Zhang;
    Materials Research Bulletin,
    2020. DOI: 10.1016/j.materresbull.2020.110821

  79. Toward a Self-Sensing Piezoresistive Pressure Sensor for all-SiC Monolithic Integration
    L.M. Middelburg; H.W. van Zeijl; S. Vollebregt; B. Morana; GuoQi Zhang;
    IEEE Sensors,
    Volume 20, Issue 19, pp. 11265-11274, 2020. DOI: 10.1109/JSEN.2020.2998915

  80. Low-Humidity Sensing Properties of Multi-Layered Graphene Grown by Chemical Vapor Deposition
    Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Pasqualina M. Sarro; Georg S. Duesberg;
    MDPI Sensors,
    Volume 20, Issue 11, pp. 3174, 2020.
    document

  81. Wafer-scale transfer-free process of multi-layered graphene grown by chemical vapor deposition
    Filiberto Ricciardella; Sten Vollebregt; Bart Boshuizen; F.J.K. Danzl; Ilkay Cesar; Pierpaolo Spinelli; Pasqualina Maria Sarro;
    Material Research Express,
    2020. DOI: 10.1088/2053-1591/ab771e

  82. Vertically-Aligned Multi-Walled Carbon Nano Tube Pillars with Various Diameters under Compression: Pristine and NbTiN Coated
    Amir Mirza Gheitaghy; René H. Poelma; Leandro Sacco; Sten Vollebregt; GuoQi Zhang;
    MDPI Nanomaterials,
    Volume 10, Issue 6, pp. 1189, 2020. DOI: 10.3390/nano10061189

  83. The influence of H2 and NH3 on catalyst nanoparticle formation and carbon nanotube growth
    R. Pezone; S. Vollebregt; P.M. Sarro; Sandeep Unnikrishnan;
    Carbon,
    Volume 170, pp. 384-393, 2020.
    document

  84. Low power AlGaN/GaN MEMS pressure sensor for high vacuum application
    Jianwen Sun; Dong Hu; Zewen Liu; Luke Middelburg; Sten Vollebregt; Pasqualina M. Sarro; Guoqi Zhang;
    Sensors and Actuators A: Physical,
    Volume 314, pp. 112217, 2020.
    document

  85. Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature
    Mostafa Shooshtari; Alireza Salehi; Sten Vollebregt;
    IEEE Sensors,
    2020.
    document

  86. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives
    Hongyu Tang; Leandro Sacco; Sten Vollebregt; Huaiyu Ye; Xuejun; Fan; GuoQi Zhang;
    Journal of Materials Chemistry A,
    Volume 8, pp. 24943-24976, 2020.
    document

  87. Soft, flexible and transparent graphene-based active spinal cord implants for optogenetic studies
    A. Velea; S. Vollebregt; Vasiliki Giagka;
    13th International Symposium on Flexible Organic Electronics (ISFOE20),
    2020. Scientific Poster.
    document

  88. Functionalisation of Multi-Layer Graphene-Based Gas Sensor by Au Nanoparticles
    Morelli, Laura; Ricciardella, Filiberto; Koole, Max; Persijn, Stefan; Vollebregt, Sten;
    Proceedings,
    Volume 56, Issue 1, pp. 1, Dec 2020. DOI: 10.3390/proceedings2020056001
    document

  89. Functionalization of multi-layer graphene-based gas sensor by Au nanoparticles
    Laura Morelli; Filiberto Ricciardelli; Max Koole; Stefan Persijn; Sten Vollebregt;
    In Proc. of NanoFIS,
    2020.

  90. 3D-impaction printing of porous layers
    van Ginkel, H. J.; Roels, P.; Boeije, M. F. J.; Pfeiffer, T. V.; Vollebregt, S.; GuoQi Zhang; Schmidt-Ott, A.,;
    In European Aerosol Conference,
    2020.

  91. Wafer-scale Graphene-based Soft Implant with Optogenetic Compatibility
    Andrade Velea; Sten Vollebregt; Gandhika Wardhana; Vasso Giagka;
    In IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2020),
    2020. DOI: 10.1109/MEMS46641.2020.9056367

  92. Characterization of low-loss hydrogenated amorphous silicon films for superconducting resonators
    B. T. Buijtendorp; J. Bueno; D. J. Thoen; V. Murugesan; P. M. Sberna; J. J. A. Baselmans; S. Vollebregt; A. Endo;
    In Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X,
    2020.
    document

  93. Analysis of a calibration method for non-stationary CVD multi-layered graphene-based gas sensors
    Filiberto Ricciardella; Tiziana Polichetti; Sten Vollebregt; Brigida Alfano; Ettore Massera; Lina Sarro;
    IOP Nanotechnology,
    Volume 30, pp. 385501-1-8, 2019. DOI: 10.1088/1361-6528/ab2aac
    document

  94. Growth of multi-layered graphene on molybdenum catalyst by solid phase reaction with amorphous carbon
    Filiberto Ricciardella; Sten Vollebregt; Evgenia Kurganova; A.J.M. Giesbers; Majid Ahmadi; Lina Sarro;
    2D Materials,
    Volume 6, pp. 035012, 2019. DOI: 10.1088/2053-1583/ab1518

  95. Mass measurement of graphene using quartz crystal microbalances
    Robin J Dolleman; Mick Hsu; Sten Vollebregt; John E Sader; Herre SJ van der Zant; Peter G Steeneken; Murali K Ghatkesar;
    Applied Physics Letters,
    Volume 115, Issue 5, pp. 053102, 2019. DOI: 10.1063/1.5111086
    document

  96. Towards an Active Graphene-PDMS Implant
    Wardhana, G. K.; Serdijn, W.; Vollebregt, S.; Giagka, V.;
    In Abstract from 7th Dutch Bio-Medical Engineering Conference,
    2019.
    document

  97. Compressive response of pristine and superconductor coated MWCNT pillars
    A. M. Gheytaghi; S. Vollebregt; R.H. Poelma; H. W. Zeijl; GuoQi Zhang;
    In IEEE MEMS,
    2019.

  98. Wafer-scale integration of CVD graphene on CMOS devices using a transfer-free approach
    Sten Vollebregt; Joost Romijn; Henk W. van Zeijl; Pasqualina M. Sarro;
    In Graphene Week,
    2019.

  99. Free-standing, Transfer-free Graphene-based Differential Pressure Sensors
    R. Ramesha; S. Vollebregt; P.M. Sarro;
    In SAFE/ProRISC,
    2019.

  100. Transfer-free Graphene-based Differential Pressure Sensor
    Raghutham Ramesha; Sten Vollebregt; Lina Sarro;
    In Proc. IEEE NMDC,
    2019.

  101. Towards a Microfabricated Flexible Graphene-Based Active Implant for Tissue Monitoring During Optogenetic Spinal Cord Stimulation
    Andrada Iulia Velea; Sten Vollebregt; Tim Hosman; Anna Pak; Vasiliki Giagka;
    In Proc. IEEE NMDC,
    2019.

  102. Flexible, graphene-based acive implant for spinal cord stimulation in rodents
    Andrada Velea; Sten Vollebregt; Vasiliki Giagka;
    In SAFE/ProRISC,
    2019.

  103. A wafer-scale process for the monolithic integration of CVD graphene and CMOS logic for smart MEMS/NEMS sensors
    Joost Romijn; Sten Vollebregt; Henk W. van Zeijl; Pasqualina M. Sarro;
    In IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). Piscataway: IEEE,
    2019. DOI: 10.1109/MEMSYS.2019.8870741

  104. Graphene pellicle lithographic apparatus
    Evgenia Kurganova; Jos Giesbers; Maria Peter; Maxim Naselevich; Arnoud Notenboom; Alexander Klein; Pieter-Jan van Zwol; David Vles; Pim Voorthuijzen; Sten Vollebregt;
    Patent, WO2019170356, 2019.

  105. Full wafer transfer-free graphene
    Filiberto Ricciardella; Sten Vollebregt; Lina Sarro;
    Patent, WO2019125140; NL2020111, 2019.

  106. Grafeen: een zoektocht naar de toepassing
    Sten Vollebregt; Jos Giesbers; Johan Klootwijk;
    Nederlands Tijdschrift voor Natuurkunde,
    pp. 16-20, September 2018.

  107. Carbon Nanotube Array: Scaffolding Material for Opto, Electro, Thermo, and Mechanical Systems
    Amir M. Gheytaghi; H. van Zeijl; S. Vollebregt; R.H. Poelma; C. Silvestri; R. Ishihara; G. Q. Zhang; P. M. Sarro;
    Innovative Materials,
    Volume 3, pp. 22-25, 2018.

  108. Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes
    Cinzia Silvestri; Michele Riccio; René H. Poelma; Aleksandar Jovic; Bruno Morana; Sten Vollebregt; Andrea Irace; GuoQi Zhang; Pasqualina M. Sarro;
    Small,
    Volume 14, Issue 20, pp. 1800614, 2018. DOI: 10.1002/smll.201800614

  109. A transfer-free approach to wafer-scale graphene deposited by chemical vapour deposition
    Sten Vollebregt; Filiberto Ricciardella; Joost Romijn; Manvika Singh; Shengtai Shi; Lina Sarro;
    In Graphene Conference,
    2018. (invited).
    document

  110. Making large free-standing multi-layer graphene/graphitic membranes
    Evgenia Kurganova; A.J.M. Giesbers; Sten Vollebregt; Arnoud Notenboom; David Vles; Maxim Nasalevich; Peter van Zwol;
    In Graphene Conference,
    2018.

  111. A Miniaturized Low Power Pirani Pressure Sensor Based on Suspended Graphene
    Joost Romijn; Sten Vollebregt; Robin J. Dolleman; Manvika Singh; Herre S.J. van der Zant; Peter G. Steeneken; Pasqualina M. Sarro;
    In Proceedings of IEEE NEMS,
    2018.

  112. Wafer-scale CVD graphene integration: a transfer-free approach
    Sten Vollebregt;
    In GrapChina,
    2018. (invited).

  113. Wafer Level Through-polymer Optical Vias (TPOV) Enabling High Throughput of Optical Windows Manufacturing
    Z. Huang; R.H. Poelma; S. Vollebregt; M.H. Koelink; E. Boschman; R. Kropf; M. Gallouch; GuoQi Zhang;
    In IEEE Electronics System-Integration Technology Conference (ESTC),
    pp. 1-5, 2018.

  114. Effect of droplet shrinking on surface acoustic wave response in microfluidic applications
    Thu Hang Bui; Van Nguyen; Sten Vollebregt; Bruno Morana; Henk van Zeijl; Trinh Chu Duc; P.M. Sarro;
    Applied Surface Science,
    Volume 426, pp. 253-261, 2017.
    document

  115. Effects of Graphene Monolayer Coating on the Optical Performance of Remote Phosphors
    Maryam Yazdan Mehr; S. Vollebregt; W. D. van Driel; GuoQi Zhang;
    Journal of Electronic Materials,
    Volume 46, Issue 10, pp. 5866--5872, 2017. DOI: 10.1007/s11664-017-5592-8
    Keywords: ... graphene, Light-emitting diode, reliability, remote phosphor.

  116. Effects of graphene defects on gas sensing properties towards NO2 detection
    Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Mario Miscuglio; Brigida Alfano; Maria L. Miglietta; Ettore Massera; Girolamo Di Francia; Pasqualina M. Sarro;
    Nanoscale,
    Volume 9, pp. 6085-6093, 2017.
    document

  117. CVD transfer-free graphene for sensing applications
    Chiara Schiattarella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Maria Lucia Miglietta; Girolamo Di Francia; Pasqualina Maria Sarro;
    Beilstein Journal of Nanotechnology,
    Volume 8, pp. 1015-1022, 2017.
    document

  118. Carbon Nanotubes as Vertical Interconnects for 3D Integrated Circuits
    Sten Vollebregt; Ryoichi Ishihara;
    In Carbon Nanotubes for Interconnects,
    Springer International Publishing, 2017.
    document

  119. A transfer-free wafer-scale method for the fabrication of suspended graphene beams for squeeze-film pressure sensors
    S. Vollebregt; R.J. Dolleman; H.S.J. van der Zant; P.G. Steeneken; P.M. Sarro;
    In Graphene Week,
    2017.

  120. An Innovative Approach to Overcome Saturation and Recovery Issues of CVD graphene-Based Gas Sensors
    F. Ricciardella; S. Vollebregt; T. Polichetti; B. Alfano; E. Massera; P. M. Sarro;
    In Proceedings of IEEE Sensors Conference,
    pp. 1224-1226, 2017.

  121. Wafer-scale measurements of the specific contact resistance between different metals and mono- and multi-layer graphene
    S. Vollebregt; M. Singh; D.J. Wehenkel; R. van Rijn; P.M. Sarro;
    In Proc. of the 43rd international conference on Micro and Nanoengineering (MNE),
    pp. 152, 2017.

  122. Low Temperature CVD Grown Graphene for Highly Selective Gas Sensors Working under Ambient Conditions
    Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Pasqualina M. Sarro;
    In Proceedings of Eurosensors 2017,
    pp. 445, 2017.
    document

  123. High sensitive CVD graphene-based gas sensors operating under environmental conditions
    Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Pasqualina M. Sarro;
    In Graphene Conference,
    2017.

  124. Horizontally aligned carbon nanotube scaffolds for freestanding structures with enhanced conductivity
    Cinzia Silvestri; Federico Marciano; Bruno Morana; Violeta Podranovic; Sten Vollebregt; GuoQi Zhang; Pasqualina M Sarro;
    In Micro Electro Mechanical Systems (MEMS), 2017 IEEE 30th International Conference on,
    pp. 266-269, 2017.

  125. Suspended graphene beams with tunable gap for squeeze-film pressure sensing
    S. Vollebregt; R.J. Dolleman; H.S.J. van der Zant; P.G. Steeneken; P.M. Sarro;
    In Proc.of Transducers 2017, the 19th International Conference on Solid-state Sensors, Actuators, and Microsystems,
    pp. 770-773, 2017.

  126. Fabrication and characterization of an Upside-down Carbon Nanotube (CNT) Microelectrode array (MEA)
    Gaio, N.; Silvestri, C.; van Meer, B.; Vollebregt, S.; Mummery, C.; Dekker, R.;
    IEEE Sensors Journal,
    Volume 16, Issue 24, pp. 8685, 2016.

  127. Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis
    Cinzia Silvestri; Michele Riccio; Rene Poelma; Bruno Morana; Sten Vollebregt; Fabio Santagata; Andrea Irace; GuoQi Zhang; Pasqualina M. Sarro;
    Nanoscale,
    Volume 8, pp. 8266-8275, 2016.
    document

  128. Stretchable Binary Fresnel Lens for Focus Tuning
    Xueming Li; Lei Wei; Ren� H. Poelma; Sten Vollebregt; Jia Wei; Hendrik Paul Urbach; Pasqualina M. Sarro; GuoQi Zhang;
    Scientific Reports,
    Volume 6, pp. 25348, 2016.

  129. The growth of carbon nanotubes on electrically conductive ZrN support layers for through-silicon vias
    Sten Vollebregt; Sourish Banerjee; Frans D. Tichelaar; Ryoichi Ishihara;
    Microelectronic Engineering,
    Volume 156, pp. 126-130, 2016.
    document

  130. The Direct Growth of Carbon Nanotubes as Vertical Interconnects in 3D Integrated Circuits
    Sten Vollebregt; Ryoichi Ishihara;
    Carbon,
    Volume 96, pp. 332-338, 2016.
    document

  131. High sensitive gas sensors realized by a transfer-free process of CVD graphene
    Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Lina Sarro;
    In Proceedings of the IEEE Sensors conference,
    2016.

  132. A predefined wafer-scale CVD graphene deposition method requiring no transfer
    Sten Vollebregt; Lina Sarro;
    In Graphene Week,
    2016.

  133. A transfer-free wafer-scale CVD graphene fabrication process for MEMS/NEMS sensors
    S. Vollebregt; B. Alfano; F. Ricciardella; A.J.M. Giesbers; Y. Grachova; H.W. van Zeijl; T. Polichetti; P.M. Sarro;
    In Proc. of the 29th IEEE International Conference of Micro Electro Mechanical Systems,
    pp. 17-20, 2016.

  134. Fabrication of Low Temperature Carbon Nanotube Vertical Interconnects Compatible with Semiconductor Technology
    S. Vollebregt; R. Ishihara;
    Journal of Visual Experiments,
    Volume 106, pp. e53260, 2015.
    document

  135. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances
    G Fiorentino; S Vollebregt; FD Tichelaar; R Ishihara; PM Sarro;
    IOP Nanotechnology,
    Volume 26, Issue 6, pp. 064002, 2015.
    document

  136. Doped Carbon Nanotubes for Interconnects
    J. Robertson; S. Esconjauregui; L. D’Arsie; J. Yang; H. Sugime; G. Zhong; Y. Guo; S. Vollebregt; R. Ishihara; C. Cepek; G. Duesberg; T. Hallam;
    In Extended Abstracts of the 2015 International Conference on Solid State Devices and Materials (SSDM),
    2015.

  137. Carbon nanotubes TSV grown on an electrically conductive ZrN support layer
    Sten Vollebregt; Sourish Banerjee; Frans D. Tichelaar; Ryoichi Ishihara;
    In IEEE International Interconnect Technology Conference,
    pp. 281-283, 2015.

  138. Molybdenum grown CVD graphene Schottky diodes
    S. Vollebregt; F. Ricciardella; Y. Grachova; T. Polichetti; P.M. Sarro;
    In Graphene Week,
    2015.

  139. Tunable binary fresnel lens based on stretchable PDMS/CNT compsite
    Xueming Li; L. Wei; S. Vollebregt; R. Poelma; Y. Shen; Jia Wei; P. Urbach; P.M. Sarro; GuoQi Zhang;
    In Transducers,
    pp. 2041-2044, 2015.

  140. Crystallinity variations over the length of vertically aligned carbon nanotubes grown by chemical vapour deposition
    S. Vollebregt; P. Padmanabhan; C. Silvestri; P.M. Sarro;
    In 41st Micro and Nano Engineering conference,
    2015.

  141. The Role of Edge Defects in Liquid Phase Exfoliated and Chemical Vapor Deposited Graphene for NO2 Detection
    F Ricciardella; S Vollebregt; T Polichetti; B Alfano; PM Sarro; ML Miglietta; E Massera; G Di Francia;
    In GraphITA,
    2015.

  142. Upside-down Carbon Nanotube (CNT) Micro-electrode Array (MEA)
    N. Gaio; B. van Meer; C. Silvestri; Saeed Khoshfetrat Pakazad; S. Vollebregt; C.L. Mummery; R. Dekker;
    In IEEE Sensors Conference,
    2015.

  143. Dominant thermal boundary resistance in multi-walled carbon nanotube bundles fabricated at low temperature
    Vollebregt, Sten; Banerjee, Sourish; Chiaramonti, Ann N; Tichelaar, Frans D; Beenakker, Kees; Ishihara, Ryoichi;
    Journal of Applied Physics,
    Volume 116, Issue 2, pp. 023514, 2014.

  144. Carbon nanotube vertical interconnects fabricated at temperatures as low as 350 �C
    Vollebregt, Sten; Tichelaar, FD; Schellevis, H; Beenakker, CIM; Ishihara, R;
    Carbon,
    Volume 71, pp. 249--256, 2014.

  145. Failure Analysis and Reliability of Low-Temperature-Grown Multi-Wall Carbon Nanotube Bundles Integrated as Vias in Monolithic Three-Dimensional Integrated Circuits
    Chiaramonti, Ann N; Vollebregt, Sten; Sanders, Aric W; Ishihara, Ryoichi; Read, David T;
    Microsc. Microanal,
    Volume 20, pp. 1762-1763, 2014.

  146. Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings
    Poelma, RH; Morana, Bruno; Vollebregt, Sten; Schlangen, Erik; van Zeijl, HW; Fan, Xuejun; Zhang, GuoQi;
    Advanced Functional Materials,
    Volume 24, Issue 36, pp. 5737-5744, 2014.
    document

  147. Carbon Nanotube Vertical Interconnects: Prospects and Challenges
    Vollebregt, S; Beenakker, CIM; Ishihara, R;
    In Micro-and Nanoelectronics: Emerging Device Challenges and Solutions,
    CRC Press, 2014.

  148. High Quality Wafer-scale CVD Graphene on Molybdenum Thin Film for Sensing Application
    Yelena Grachova; Sten Vollebregt; Andrea Leonardo Lacaita; Pasqualina M. Sarro;
    In Procedia Engineering 87: EUROSENSORS 2014, the 28th European Conference on Solid-State Transducers,
    pp. 1501-1504, 2014.
    document

  149. 3D solid-state supercapacitors obtained by ALD coating of high-density carbon nanotubes bundles
    Fiorentino, Giuseppe; Vollebregt, Sten; Tichelaar, FD; Ishihara, Ryoichi; Sarro, Pasqualina M;
    In Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on,
    IEEE, pp. 342--345, 2014.

  150. CNT bundles growth on microhotplates for direct measurement of their thermal properties
    C. Silvestri; B. Morana; G. Fiorentino; S. Vollebregt; G. Pandraud; F. Santagata; GuoQi Zhang; P.M. Sarro;
    In 27th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2014),
    San Francisco, USA, Jan. 2014.
    document

  151. Carbon Nanotubes as Vertical Interconnects in 3D Integrated Circuits
    Sten Vollebregt;
    PhD thesis, Delft University of Technology, 2014.
    document

  152. Size-Dependent Effects on the Temperature Coefficient of Resistance of Carbon Nanotube Vias
    Vollebregt, Sten; Banerjee, Sourish; Beenakker, Kees; Ishihara, Ryoichi;
    Electron Devices, IEEE Transactions on,
    Volume 60, Issue 12, pp. 4085--4089, 2013.

  153. Thermal conductivity of low temperature grown vertical carbon nanotube bundles measured using the three-ω method.
    S. Vollebregt; S. Banerjee; C.I.M. Beenakker; R. Ishihara;
    Applied Physics Letters,
    Volume 102, Issue 19, pp. 1-4, 2013.

  154. Towards the integration of carbon nanotubes as vias in monolithic three-dimensional integrated circuits
    S. Vollebregt; Chiaramonti A.N.; J. van der Cingel; C.I.M. Beenakker; R. Ishihara;
    Japanese Journal of Applied Physics. Part 1, Regular Papers Brief Communications & Review Papers,
    Volume 52, Issue 1-5, 2013.

  155. Integrating low temperature aligned carbon nanotubes as vertical interconnects in Si technology
    Sten Vollebregt; Ryoichi Ishihara; Jaber J. Derakhshandehohan van der Cingel; Hugo Schellevis; C.I.M. Beenakker;
    In Nanoelectronic Device Applications Handbook,
    Taylor and Francis, 2013.

  156. Carbon Nanotubes as Interconnects in Integrated Circuits
    Vollebregt, S; Ishihara, R; Beenakker, CIM;
    In Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition,
    Taylor and Francis, 2013.

  157. Carbon nanotube vias fabricated at back-end of line compatible temperature using a novel CoAl catalyst
    S. Vollebregt; H. Schellevis; C.I.M. Beenakker; R. Ishihara;
    In S. Ogawa (Ed.), IEEE International Interconnect Technology Conference-technical papers,
    Kyoto, Japan, Jun. 2013.

  158. Carbon Nanotube based heat-sink for solid state lighting
    F. Santagata; G. Almanno; S. Vollebregt; C Silvestri; GuoQi Zhang; P.M. Sarro;
    In 8th IEEE Int. Conf. Nano/Micro Engineered and Molecular Systems (NEMS),
    pp. 1214-1217, Apr 2013. DOI 10.1109/NEMS.2013.6559937.

  159. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers
    S. Vollebregt; R. Ishihara; F.D. Tichelaar; Y. Hou; C.I.M. Beenakker;
    Carbon,
    Volume 50, Issue 10, pp. 3542-3554, Aug. 2012. DOI 10.1016/j.carbon.2012.03.026.

  160. Integrating carbon nanotubes as vias in a monolithic 3DIC process
    S. Vollebregt; R. Ishihara; A.N. Chiaramonti; J. van der Cingel; C.I.M. Beenakker;
    In Proc. International Conference on Solid State Devices and Materials (SSDM 2012),
    Kyoto, Japan, pp. 1170-1171, Sep 2012.

  161. Electrical characterization of carbon nanotube vertical interconnects with different lengths and widths
    S. Vollebregt; R. Ishihara; F.D. Tichelaar; J. van der Cingel; C.I.M. Beenakker;
    In IEEE International Interconnect Technology Conference (IITC 2012),
    San Jose, CA, USA, pp. 1-3, Jun. 2012. DOI 10.1109/IITC.2012.6251578.

  162. Low-temperature bottom-up integration of carbon nanotubes for vertical interconnects in monolithic 3D integrated circuits
    S. Vollebregt; R. Ishihara; J. van der Cingel; C.I.M. Beenakker;
    In 3rd IEEE International 3D Systems Integration Conference (3DIC 2011),
    Osaka, Japan, Jan. 2012. DOI 10.1109/3DIC.2012.6262989.

  163. Multilayer conformal coating of highly dense Multi-Walled Carbon Nanotubes bundles
    G. Fiorentino; S. Vollebregt; R. Ishihara; P.M. Sarro;
    In 2012 12th IEEE Conference on Nanotechnology (IEEE-NANO),
    Birmingham, UK, Aug. 2012. ISBN 978-1-4673-2198-3; DOI 10.1109/NANO.2012.6322054.

  164. Contact resistance of low-temperature carbon nanotube vertical interconnects
    S. Vollebregt; A.N. Chiaramonti; R. Ishihara; H. Schellevis; C.I.M. Beenakker;
    In K. Jiang (Ed.), 2012 12th IEEE Conference on Nanotechnology (IEEE-NANO),
    Birmingham, UK, Aug. 2012. ISBN 978-1-4673-2198-3; DOI 10.1109/NANO.2012.6321985.

  165. Electrical characterisation of low temperature aligned carbon nanotubes for vertical interconnects
    S. Vollebregt; R. Ishihara; J. van der Cingel; H. Schellevis; C.I.M. Beenakker;
    In Proc. ICT.OPEN: Micro technology and micro devices (SAFE 2011),
    Veldhoven, The Netherlands, Nov. 2011.

  166. Use of multi-wall carbon nanotubes as an absorber in a thermal detector
    H. Wu; S. Vollebregt; A. Emadi; G. de Graaf; R. R. IshiharaF. Wolffenbuttel;
    In C. Tsamis; G. Kaltas (Ed.), Proc. Eurosensors XXV,
    Athens, Greece, Procedia Engineering, pp. 523-526, Sep. 2011. DOI 10.1016/j.proeng.2011.12.130.

  167. Integrating low temperature aligned carbon nanotubes as vertical interconnects in Si technology
    S. Vollebregt; R. Ishihara; J. J. Derakhshandeh. van der Cingel; H. Schellevis; C.I.M. Beenakker;
    In Proc. 11th IEEE International Conference on Nanotechnology (NANO 2011),
    Portland, OR, pp. 985-990, Aug. 2011.

  168. Patterned aligned carbon nanotubes for vertical interconnects in 3D integrated TFT circuits
    S. Vollebregt; R. Ishihara; J. J. Derakhshandeh. van der Cingel; W.H.A. Wien; C.I.M. Beenakker;
    In 7th International Thin-Film Transistor Conference,
    Cambridge, United Kingdom, Mar. 2011.

  169. Growth of high density aligned carbon nanotubes using palladium as catalyst
    S. Vollebregt; J. Derakhshandeh; R. Ishihara; M. Y. Wu; C. I. M. Beenakker;
    Journal of Electronic Materials,
    Volume 39, Issue 4, pp. 371-375, 2010.

  170. Patterned growth of carbon nanotubes for vertical interconnect in 3D integrated circuits
    S. Vollebregt; R. Ishihara; J. Derakhshandeh; W. Wien; J. van der Cingel; C.E.M. Beenakker;
    In Proc. of SAFE 2010,
    pp. 184-187, 2010.

  171. Investigating Low Temperature High Density Aligned Carbon Nanotube and Nanofilament Growth using Palladium as Catalyst
    S. Vollebregt; J. Derakhshandeh; M.Y. Wu; R. Ishihara; C.I.M. Beenakker;
    In SAFE 2009,
    STW, pp. 125-128, 2009.

  172. Growth of high density aligned carbon nanotubes using palladium as catalyst
    S. Vollebregt; J. Derakhshandeh; R. Ishihara; C.I.M. Beenakker;
    In Proceedings of Electronic Material conference 2009,
    USA, 2009.

BibTeX support